Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

نویسندگان

  • Ji Zhang
  • Morton H Friedman
چکیده

The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency.

Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring ...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Correlation Between Soluble Vascular Endothelial Growth Factor A, Its Receptor 1 And Response To Chemotherapy In Acute Leukemia In Children

  Background and Objective: Vascular endothelial growth factor (VEGF) and its receptors (VEGF-R1 and R2) are major regulators of angiogenesis. This study was designed to assess serum levels of VEGF and VEGF-R1 and their prognostic significance in newly diagnosed childhood acute leukemia. Materials and Methods: For this purpose, VEGF and VEGF-R1 were determined using enzyme linked immuno-sorba...

متن کامل

Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress.

The vascular endothelium, by virtue of its position at the interface between blood and the vessel wall, is known to play a critical role in the control of thrombosis and fibrinolysis. Thrombomodulin (TM) is a surface receptor that binds thrombin and is a potent activator of the protein C anticoagulant pathway. Although TM expression is known to be regulated by various cytokines, little is known...

متن کامل

Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression.

The apparent tendency of atherosclerotic lesions to form in complex blood flow environments has led to many theories regarding the importance of hemodynamic forces in endothelium-mediated atherosusceptibility. The effects of shear stress magnitude and spatial shear stress gradient on endothelial cell gene expression in vitro were examined in this study. Converging-width flow channels were desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 302 4  شماره 

صفحات  -

تاریخ انتشار 2012